Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Mikrochim Acta ; 191(5): 285, 2024 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652174

RESUMO

One significant constraint in the advancement of biosensors is the signal-to-noise ratio, which is adversely affected by the presence of interfering factors such as blood in the sample matrix. In the present investigation, a specific aptamer binding was chosen for its affinity, while exhibiting no binding affinity towards non-target bacterial cells. This selective binding property was leveraged to facilitate the production of magnetic microparticles decorated with aptamers. A novel assay was developed to effectively isolate S. pneumoniae from PBS or directly from blood samples using an aptamer with an affinity constant of 72.8 nM. The capture experiments demonstrated efficiencies up to 87% and 66% are achievable for isolating spiked S. pneumoniae in 1 mL PBS and blood samples, respectively.


Assuntos
Aptâmeros de Nucleotídeos , Dióxido de Silício , Aptâmeros de Nucleotídeos/química , Dióxido de Silício/química , Streptococcus pneumoniae/isolamento & purificação , Streptococcus pneumoniae/química , Humanos , Técnicas Biossensoriais/métodos , Nanopartículas de Magnetita/química
2.
Mikrochim Acta ; 191(3): 153, 2024 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-38393379

RESUMO

This study introduces aptamer-functionalized polyhedral oligomeric silsesquioxane (POSS) nanoparticles for adenosine triphosphate (ATP) detection where the POSS nanoparticles were synthesized in a one-step, continuous flow microfluidic reactor utilizing thermal polymerization. A microemulsion containing POSS monomers was generated in the microfluidic reactor which was designed to prevent clogging by using a continuous oil flow around the emulsion during thermal polymerization. Surfaces of POSS nanoparticles were biomimetically modified by polydopamine. The aptamer sequence for ATP was successfully attached to POSS nanoparticles. The aptamer-modified POSS nanoparticles were tested for affinity-based biosensor applications using ATP as a model molecule. The nanoparticles were able to capture ATP molecules successfully with an affinity constant of 46.5 [Formula: see text]M. Based on this result, it was shown, for the first time, that microfluidic synthesis of POSS nanoparticles can be utilized in designing aptamer-functionalized nanosystems for biosensor applications. The integration of POSS in biosensing technologies not only exemplifies the versatility and efficacy of these nanoparticles but also marks a significant contribution to the field of biorecognition and sample preparation.


Assuntos
Técnicas Biossensoriais , Nanopartículas , Compostos de Organossilício , Trifosfato de Adenosina , Microfluídica , Oligonucleotídeos
3.
Anal Chem ; 96(5): 1985-1992, 2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-38254336

RESUMO

This study presents a novel miniaturized device as a 3D-printed microfluidic magnetic platform specifically designed to manipulate magnetic microparticles in a microfluidic chip for rapid deoxyribonucleic acid (DNA) isolation. The novel design enables the movement of the magnetic particles in the same or opposite directions with the flow or suspends them in continuous flow. A computational model was developed to assess the effectiveness of the magnetic manipulation of the particles. Superparamagnetic monodisperse silica particles synthesized in-house are utilized for the isolation of fish sperm DNA and human placenta DNA. It was demonstrated that the proposed platform can perform DNA isolation within 10 min with an isolation efficiency of 50% at optimum operating conditions.


Assuntos
Técnicas Analíticas Microfluídicas , Microfluídica , Masculino , Humanos , Sêmen , DNA , Fenômenos Magnéticos , Impressão Tridimensional
4.
Nanomedicine ; 48: 102651, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36623713

RESUMO

This study aims to establish a primary rat hepatocyte culture model to evaluate dose-dependent hepatotoxic effects of drug carriers (lipopolymer nanoparticles; LPNs) temporal. Primary rat hepatocyte cell cultures were used to determine half-maximal Inhibition Concentrations (IC50) of the drug-carrier library. Drug-carrier library, at concentrations <50 µg/mL, is benign to primary rat hepatocytes as determined using albumin and urea secretions. Albumin, as a hepatic biomarker, exhibited a more sensitive and faster outcome, compared to urea, for the determination of the IC50 value of LPNs. Temporal measurements of hepatic biomarkers including urea and albumin, and rigorous physicochemical (hydrodynamic diameter, surface charge, etc.) characterization, should be combined to evaluate the hepatotoxicity of drug carrier libraries in screens.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Portadores de Fármacos , Ratos , Animais , Células Cultivadas , Cultura Primária de Células , Portadores de Fármacos/farmacologia , Hepatócitos , Albuminas , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Ureia/metabolismo , Ureia/farmacologia
5.
Artif Cells Nanomed Biotechnol ; 46(1): 178-184, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28328301

RESUMO

Monodisperse silica microspheres with bimodal pore-size distribution were proposed as a high performance sorbent for DNA isolation in batch fashion under equilibrium conditions. The proposed sorbent including both macroporous and mesoporous compartments was synthesized 5.1 µm in-size, by a "staged shape templated hydrolysis and condensation method". Hydrophilic polymer based sorbents were also obtained in the form of monodisperse-macroporous microspheres ca 5.5 µm in size, with different functionalities, by a developed "multi-stage microsuspension copolymerization" technique. The batch DNA isolation performance of proposed material was comparatively investigated using polymer based sorbents with similar morphologies. Among all sorbents tried, the best DNA isolation performance was achieved with the monodisperse silica microspheres with bimodal pore size distribution. The collocation of interconnected mesoporous and macroporous compartments within the monodisperse silica microspheres provided a high surface area and reduced the intraparticular mass transfer resistance and made easier both the adsorption and desorption of DNA. Among the polymer based sorbents, higher DNA isolation yields were achieved with the monodisperse-macroporous polymer microspheres carrying trimethoxysilyl and quaternary ammonium functionalities. However, batch DNA isolation performances of polymer based sorbents were significantly lower with respect to the silica microspheres.


Assuntos
DNA/química , DNA/isolamento & purificação , Microesferas , Polímeros/química , Dióxido de Silício/química , Adsorção , Interações Hidrofóbicas e Hidrofílicas
6.
Mater Sci Eng C Mater Biol Appl ; 74: 10-20, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28254272

RESUMO

Monodisperse-porous silica microspheres 5.1µm in size with a bimodal pore-size distribution (including both mesoporous and macroporous compartments) were obtained using a newly developed staged-shape templated hydrolysis and condensation protocol. Synthesized silica microspheres and monodisperse-porous polymer-based microspheres with different functionalities, synthesized by staged-shape template polymerization, were comparatively tested as sorbents for human genomic DNA (hgDNA) isolation in a microfluidic system. Microcolumns with a permeability range of 1.8-8.5×10-13m2 were fabricated by the slurry-packing of silica- or polymer-based microspheres. The monodisperse-porous silica microspheres showed the best performance in hgDNA isolation in an aqueous buffer medium; >2500ng of hgDNA was recovered with an isolation yield of about 50%, using an hgDNA feed concentration of 100ng/µL. Monodisperse-porous silica microspheres were also evaluated as a sorbent for genomic DNA isolation from human whole blood in the microfluidic system; 14ng of hgDNA was obtained from 10µL of whole blood lysate with an isolation yield of 64%. Based on these results, we conclude that monodisperse-porous silica microspheres with a bimodal pore size distribution are a promising sorbent for the isolation of hgDNA in larger amounts and with higher yields compared to the sorbents previously tried in similar microfluidic systems.


Assuntos
DNA/isolamento & purificação , Genoma Humano , Técnicas Analíticas Microfluídicas/métodos , Polímeros/química , Dióxido de Silício/química , Adsorção , DNA/sangue , Humanos , Técnicas Analíticas Microfluídicas/instrumentação , Microscopia Eletrônica de Varredura , Tamanho da Partícula , Porosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA